Periodic solutions of a three-species periodic reaction-diffusion system
Tiantian Qiao ; Jiebao Sun ; Boying Wu
Annales Polonici Mathematici, Tome 101 (2011), p. 179-191 / Harvested from The Polish Digital Mathematics Library

We study a periodic reaction-diffusion system of a competitive model with Dirichlet boundary conditions. By the method of upper and lower solutions and an argument similar to that of Ahmad and Lazer, we establish the existence of periodic solutions and also investigate the stability and global attractivity of positive periodic solutions under certain conditions.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:280366
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-2-7,
     author = {Tiantian Qiao and Jiebao Sun and Boying Wu},
     title = {Periodic solutions of a three-species periodic reaction-diffusion system},
     journal = {Annales Polonici Mathematici},
     volume = {101},
     year = {2011},
     pages = {179-191},
     zbl = {1215.35160},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-2-7}
}
Tiantian Qiao; Jiebao Sun; Boying Wu. Periodic solutions of a three-species periodic reaction-diffusion system. Annales Polonici Mathematici, Tome 101 (2011) pp. 179-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-2-7/