Existence and uniqueness of periodic solutions for odd-order ordinary differential equations
Yongxiang Li ; He Yang
Annales Polonici Mathematici, Tome 101 (2011), p. 105-114 / Harvested from The Polish Digital Mathematics Library

The paper deals with the existence and uniqueness of 2π-periodic solutions for the odd-order ordinary differential equation u(2n+1)=f(t,u,u',...,u(2n)), where f:×2n+1 is continuous and 2π-periodic with respect to t. Some new conditions on the nonlinearity f(t,x,x,...,x2n) to guarantee the existence and uniqueness are presented. These conditions extend and improve the ones presented by Cong [Appl. Math. Lett. 17 (2004), 727-732].

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:280235
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-2-1,
     author = {Yongxiang Li and He Yang},
     title = {Existence and uniqueness of periodic solutions for odd-order ordinary differential equations},
     journal = {Annales Polonici Mathematici},
     volume = {101},
     year = {2011},
     pages = {105-114},
     zbl = {1222.34046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-2-1}
}
Yongxiang Li; He Yang. Existence and uniqueness of periodic solutions for odd-order ordinary differential equations. Annales Polonici Mathematici, Tome 101 (2011) pp. 105-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-2-1/