Koebe's general uniformisation theorem for planar Riemann surfaces
Gollakota V. V. Hemasundar
Annales Polonici Mathematici, Tome 101 (2011), p. 77-85 / Harvested from The Polish Digital Mathematics Library

We give a complete and transparent proof of Koebe's General Uniformisation Theorem that every planar Riemann surface is biholomorphic to a domain in the Riemann sphere ℂ̂, by showing that a domain with analytic boundary and at least two boundary components on a planar Riemann surface is biholomorphic to a circular-slit annulus in ℂ.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:280835
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-1-7,
     author = {Gollakota V. V. Hemasundar},
     title = {Koebe's general uniformisation theorem for planar Riemann surfaces},
     journal = {Annales Polonici Mathematici},
     volume = {101},
     year = {2011},
     pages = {77-85},
     zbl = {1222.30035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-1-7}
}
Gollakota V. V. Hemasundar. Koebe's general uniformisation theorem for planar Riemann surfaces. Annales Polonici Mathematici, Tome 101 (2011) pp. 77-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-1-7/