We provide a local as well as a semilocal convergence analysis for Newton's method using unifying hypotheses on twice Fréchet-differentiable operators in a Banach space setting. Our approach extends the applicability of Newton's method. Numerical examples are also provided.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am42-1-4,
author = {I. K. Argyros and D. Gonz\'alez},
title = {A unifying convergence analysis of Newton's method for twice Fr\'echet-differentiable operators},
journal = {Applicationes Mathematicae},
volume = {42},
year = {2015},
pages = {29-56},
zbl = {1337.65045},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am42-1-4}
}
I. K. Argyros; D. González. A unifying convergence analysis of Newton's method for twice Fréchet-differentiable operators. Applicationes Mathematicae, Tome 42 (2015) pp. 29-56. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am42-1-4/