A unifying convergence analysis of Newton's method for twice Fréchet-differentiable operators
I. K. Argyros ; D. González
Applicationes Mathematicae, Tome 42 (2015), p. 29-56 / Harvested from The Polish Digital Mathematics Library

We provide a local as well as a semilocal convergence analysis for Newton's method using unifying hypotheses on twice Fréchet-differentiable operators in a Banach space setting. Our approach extends the applicability of Newton's method. Numerical examples are also provided.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279932
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am42-1-4,
     author = {I. K. Argyros and D. Gonz\'alez},
     title = {A unifying convergence analysis of Newton's method for twice Fr\'echet-differentiable operators},
     journal = {Applicationes Mathematicae},
     volume = {42},
     year = {2015},
     pages = {29-56},
     zbl = {1337.65045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am42-1-4}
}
I. K. Argyros; D. González. A unifying convergence analysis of Newton's method for twice Fréchet-differentiable operators. Applicationes Mathematicae, Tome 42 (2015) pp. 29-56. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am42-1-4/