We investigate the existence of renormalized solutions for some nonlinear parabolic problems associated to equations of the form ⎧ in Q = Ω×(0,T), ⎨ u(x,t) = 0 on ∂Ω ×(0,T), ⎩ in Ω. with s = (N+2)/(N+p) (p-1), , τ = (N+p)/(p-1), r = (N(p-1) + p)/(N+2), and f ∈ L¹(Q).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-8, author = {Ahmed Aberqi and Jaouad Bennouna and M. Hammoumi and Mounir Mekkour and Ahmed Youssfi}, title = {Existence results for a class of nonlinear parabolic equations with two lower order terms}, journal = {Applicationes Mathematicae}, volume = {41}, year = {2014}, pages = {207-219}, zbl = {1327.35202}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-8} }
Ahmed Aberqi; Jaouad Bennouna; M. Hammoumi; Mounir Mekkour; Ahmed Youssfi. Existence results for a class of nonlinear parabolic equations with two lower order terms. Applicationes Mathematicae, Tome 41 (2014) pp. 207-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-8/