We discuss the existence of entropy solution for the strongly nonlinear unilateral parabolic inequalities associated to the nonlinear parabolic equations ∂u/∂t - div(a(x,t,u,∇u) + Φ(u)) + g(u)M(|∇u|) = μ in Q, in the framework of Orlicz-Sobolev spaces without any restriction on the N-function of the Orlicz spaces, where -div(a(x,t,u,∇u)) is a Leray-Lions operator and . The function g(u)M(|∇u|) is a nonlinear lower order term with natural growth with respect to |∇u|, without satisfying the sign condition, and the datum μ belongs to L¹(Q) or .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-6, author = {Azeddine Aissaoui Fqayeh and Abdelmoujib Benkirane and Mostafa El Moumni}, title = {Entropy solutions for nonlinear unilateral parabolic inequalities in Orlicz-Sobolev spaces}, journal = {Applicationes Mathematicae}, volume = {41}, year = {2014}, pages = {185-193}, zbl = {1307.35147}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-6} }
Azeddine Aissaoui Fqayeh; Abdelmoujib Benkirane; Mostafa El Moumni. Entropy solutions for nonlinear unilateral parabolic inequalities in Orlicz-Sobolev spaces. Applicationes Mathematicae, Tome 41 (2014) pp. 185-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-6/