Entropy solutions for nonlinear unilateral parabolic inequalities in Orlicz-Sobolev spaces
Azeddine Aissaoui Fqayeh ; Abdelmoujib Benkirane ; Mostafa El Moumni
Applicationes Mathematicae, Tome 41 (2014), p. 185-193 / Harvested from The Polish Digital Mathematics Library

We discuss the existence of entropy solution for the strongly nonlinear unilateral parabolic inequalities associated to the nonlinear parabolic equations ∂u/∂t - div(a(x,t,u,∇u) + Φ(u)) + g(u)M(|∇u|) = μ in Q, in the framework of Orlicz-Sobolev spaces without any restriction on the N-function of the Orlicz spaces, where -div(a(x,t,u,∇u)) is a Leray-Lions operator and ΦC(,N). The function g(u)M(|∇u|) is a nonlinear lower order term with natural growth with respect to |∇u|, without satisfying the sign condition, and the datum μ belongs to L¹(Q) or L¹(Q)+W-1,xEM̅(Q).

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279886
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-6,
     author = {Azeddine Aissaoui Fqayeh and Abdelmoujib Benkirane and Mostafa El Moumni},
     title = {Entropy solutions for nonlinear unilateral parabolic inequalities in Orlicz-Sobolev spaces},
     journal = {Applicationes Mathematicae},
     volume = {41},
     year = {2014},
     pages = {185-193},
     zbl = {1307.35147},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-6}
}
Azeddine Aissaoui Fqayeh; Abdelmoujib Benkirane; Mostafa El Moumni. Entropy solutions for nonlinear unilateral parabolic inequalities in Orlicz-Sobolev spaces. Applicationes Mathematicae, Tome 41 (2014) pp. 185-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-6/