Three solutions for a nonlinear Neumann boundary value problem
Najib Tsouli ; Omar Chakrone ; Omar Darhouche ; Mostafa Rahmani
Applicationes Mathematicae, Tome 41 (2014), p. 257-266 / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to establish the existence of at least three solutions for the nonlinear Neumann boundary-value problem involving the p(x)-Laplacian of the form -Δp(x)u+a(x)|u|p(x)-2u=μg(x,u) in Ω, |u|p(x)-2u/ν=λf(x,u) on ∂Ω. Our technical approach is based on the three critical points theorem due to Ricceri.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279873
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-13,
     author = {Najib Tsouli and Omar Chakrone and Omar Darhouche and Mostafa Rahmani},
     title = {Three solutions for a nonlinear Neumann boundary value problem},
     journal = {Applicationes Mathematicae},
     volume = {41},
     year = {2014},
     pages = {257-266},
     zbl = {1304.35295},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-13}
}
Najib Tsouli; Omar Chakrone; Omar Darhouche; Mostafa Rahmani. Three solutions for a nonlinear Neumann boundary value problem. Applicationes Mathematicae, Tome 41 (2014) pp. 257-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-13/