The aim of this paper is to establish the existence of at least three solutions for the nonlinear Neumann boundary-value problem involving the p(x)-Laplacian of the form in Ω, on ∂Ω. Our technical approach is based on the three critical points theorem due to Ricceri.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-13,
author = {Najib Tsouli and Omar Chakrone and Omar Darhouche and Mostafa Rahmani},
title = {Three solutions for a nonlinear Neumann boundary value problem},
journal = {Applicationes Mathematicae},
volume = {41},
year = {2014},
pages = {257-266},
zbl = {1304.35295},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-13}
}
Najib Tsouli; Omar Chakrone; Omar Darhouche; Mostafa Rahmani. Three solutions for a nonlinear Neumann boundary value problem. Applicationes Mathematicae, Tome 41 (2014) pp. 257-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-13/