On the spectrum of the p-biharmonic operator involving p-Hardy's inequality
Abdelouahed El Khalil ; My Driss Morchid Alaoui ; Abdelfattah Touzani
Applicationes Mathematicae, Tome 41 (2014), p. 239-246 / Harvested from The Polish Digital Mathematics Library

In this paper, we study the spectrum for the following eigenvalue problem with the p-biharmonic operator involving the Hardy term: Δ(|Δu|p-2Δu)=λ(|u|p-2u)/(δ(x)2p) in Ω, uW2,p(Ω). By using the variational technique and the Hardy-Rellich inequality, we prove that the above problem has at least one increasing sequence of positive eigenvalues.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:280054
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-11,
     author = {Abdelouahed El Khalil and My Driss Morchid Alaoui and Abdelfattah Touzani},
     title = {On the spectrum of the p-biharmonic operator involving p-Hardy's inequality},
     journal = {Applicationes Mathematicae},
     volume = {41},
     year = {2014},
     pages = {239-246},
     zbl = {1304.35466},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-11}
}
Abdelouahed El Khalil; My Driss Morchid Alaoui; Abdelfattah Touzani. On the spectrum of the p-biharmonic operator involving p-Hardy's inequality. Applicationes Mathematicae, Tome 41 (2014) pp. 239-246. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-11/