A class of nonlinear viscous transport equations describing aggregation phenomena in biology is considered. General conditions on an interaction potential are obtained which lead either to the existence or to the nonexistence of global-in-time solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am38-3-1, author = {Grzegorz Karch and Kanako Suzuki}, title = {Blow-up versus global existence of solutions to aggregation equations}, journal = {Applicationes Mathematicae}, volume = {38}, year = {2011}, pages = {243-258}, zbl = {1233.35046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am38-3-1} }
Grzegorz Karch; Kanako Suzuki. Blow-up versus global existence of solutions to aggregation equations. Applicationes Mathematicae, Tome 38 (2011) pp. 243-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am38-3-1/