Local analysis of a cubically convergent method for variational inclusions
Steeve Burnet ; Alain Pietrus
Applicationes Mathematicae, Tome 38 (2011), p. 183-191 / Harvested from The Polish Digital Mathematics Library

This paper deals with variational inclusions of the form 0 ∈ φ(x) + F(x) where φ is a single-valued function admitting a second order Fréchet derivative and F is a set-valued map from q to the closed subsets of q. When a solution z̅ of the previous inclusion satisfies some semistability properties, we obtain local superquadratic or cubic convergent sequences.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:279875
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am38-2-4,
     author = {Steeve Burnet and Alain Pietrus},
     title = {Local analysis of a cubically convergent method for variational inclusions},
     journal = {Applicationes Mathematicae},
     volume = {38},
     year = {2011},
     pages = {183-191},
     zbl = {1215.49038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am38-2-4}
}
Steeve Burnet; Alain Pietrus. Local analysis of a cubically convergent method for variational inclusions. Applicationes Mathematicae, Tome 38 (2011) pp. 183-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am38-2-4/