This paper deals with variational inclusions of the form 0 ∈ φ(x) + F(x) where φ is a single-valued function admitting a second order Fréchet derivative and F is a set-valued map from to the closed subsets of . When a solution z̅ of the previous inclusion satisfies some semistability properties, we obtain local superquadratic or cubic convergent sequences.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am38-2-4, author = {Steeve Burnet and Alain Pietrus}, title = {Local analysis of a cubically convergent method for variational inclusions}, journal = {Applicationes Mathematicae}, volume = {38}, year = {2011}, pages = {183-191}, zbl = {1215.49038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am38-2-4} }
Steeve Burnet; Alain Pietrus. Local analysis of a cubically convergent method for variational inclusions. Applicationes Mathematicae, Tome 38 (2011) pp. 183-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am38-2-4/