We consider the Poisson equation with the Dirichlet and the Neumann boundary conditions in weighted Sobolev spaces. The weight is a positive power of the distance to a distinguished plane. We prove the existence of solutions in a suitably defined weighted space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am37-3-3, author = {Joanna Renc\l awowicz and Wojciech M. Zaj\k aczkowski}, title = {Existence of solutions to the Poisson equation in L2-weighted spaces}, journal = {Applicationes Mathematicae}, volume = {37}, year = {2010}, pages = {309-323}, zbl = {1205.35050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-3-3} }
Joanna Rencławowicz; Wojciech M. Zajączkowski. Existence of solutions to the Poisson equation in L₂-weighted spaces. Applicationes Mathematicae, Tome 37 (2010) pp. 309-323. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-3-3/