We consider nonautonomous competitive Kolmogorov systems, which are generalizations of the classical Lotka-Volterra competition model. Applying Ahmad and Lazer's definitions of lower and upper averages of a function, we give an average condition which guarantees that all but one of the species are driven to extinction.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am37-2-4, author = {Joanna P\k etela}, title = {Extinction in nonautonomous Kolmogorov systems}, journal = {Applicationes Mathematicae}, volume = {37}, year = {2010}, pages = {185-199}, zbl = {1242.34093}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-2-4} }
Joanna Pętela. Extinction in nonautonomous Kolmogorov systems. Applicationes Mathematicae, Tome 37 (2010) pp. 185-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-2-4/