We consider the initial-value problem for a linear hyperbolic parabolic system of three coupled partial differential equations of second order describing the process of thermodiffusion in a solid body (in one-dimensional space). We prove time decay estimates for the solution of the associated linear Cauchy problem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am37-2-2, author = {Arkadiusz Szymaniec}, title = {$L^{p}-L^{q}$ time decay estimates for the solution of the linear partial differential equations of thermodiffusion}, journal = {Applicationes Mathematicae}, volume = {37}, year = {2010}, pages = {143-170}, zbl = {1207.35079}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-2-2} }
Arkadiusz Szymaniec. $L^{p}-L^{q}$ time decay estimates for the solution of the linear partial differential equations of thermodiffusion. Applicationes Mathematicae, Tome 37 (2010) pp. 143-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-2-2/