Lp-Lq time decay estimates for the solution of the linear partial differential equations of thermodiffusion
Arkadiusz Szymaniec
Applicationes Mathematicae, Tome 37 (2010), p. 143-170 / Harvested from The Polish Digital Mathematics Library

We consider the initial-value problem for a linear hyperbolic parabolic system of three coupled partial differential equations of second order describing the process of thermodiffusion in a solid body (in one-dimensional space). We prove Lp-Lq time decay estimates for the solution of the associated linear Cauchy problem.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:279860
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am37-2-2,
     author = {Arkadiusz Szymaniec},
     title = {$L^{p}-L^{q}$ time decay estimates for the solution of the linear partial differential equations of thermodiffusion},
     journal = {Applicationes Mathematicae},
     volume = {37},
     year = {2010},
     pages = {143-170},
     zbl = {1207.35079},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-2-2}
}
Arkadiusz Szymaniec. $L^{p}-L^{q}$ time decay estimates for the solution of the linear partial differential equations of thermodiffusion. Applicationes Mathematicae, Tome 37 (2010) pp. 143-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-2-2/