Inexact Newton methods and recurrent functions
Ioannis K. Argyros ; Saïd Hilout
Applicationes Mathematicae, Tome 37 (2010), p. 113-126 / Harvested from The Polish Digital Mathematics Library

We provide a semilocal convergence analysis for approximating a solution of an equation in a Banach space setting using an inexact Newton method. By using recurrent functions, we provide under the same or weaker hypotheses: finer error bounds on the distances involved, and an at least as precise information on the location of the solution as in earlier papers. Moreover, if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained. Furthermore, numerical examples are provided using polynomial, integral and differential equations.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:280008
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am37-1-8,
     author = {Ioannis K. Argyros and Sa\"\i d Hilout},
     title = {Inexact Newton methods and recurrent functions},
     journal = {Applicationes Mathematicae},
     volume = {37},
     year = {2010},
     pages = {113-126},
     zbl = {1189.65108},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-1-8}
}
Ioannis K. Argyros; Saïd Hilout. Inexact Newton methods and recurrent functions. Applicationes Mathematicae, Tome 37 (2010) pp. 113-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-1-8/