On the Newton-Kantorovich theorem and nonlinear finite element methods
Ioannis K. Argyros
Applicationes Mathematicae, Tome 36 (2009), p. 75-81 / Harvested from The Polish Digital Mathematics Library

Using a weaker version of the Newton-Kantorovich theorem, we provide a discretization result to find finite element solutions of elliptic boundary value problems. Our hypotheses are weaker and under the same computational cost lead to finer estimates on the distances involved and a more precise information on the location of the solution than before.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:279981
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am36-1-6,
     author = {Ioannis K. Argyros},
     title = {On the Newton-Kantorovich theorem and nonlinear finite element methods},
     journal = {Applicationes Mathematicae},
     volume = {36},
     year = {2009},
     pages = {75-81},
     zbl = {1169.65044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am36-1-6}
}
Ioannis K. Argyros. On the Newton-Kantorovich theorem and nonlinear finite element methods. Applicationes Mathematicae, Tome 36 (2009) pp. 75-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am36-1-6/