Classical solutions of quasilinear functional differential equations are approximated with solutions of implicit difference schemes. Proofs of convergence of the difference methods are based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions are used. Numerical examples are given.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am35-2-3,
author = {K. Kropielnicka},
title = {Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type},
journal = {Applicationes Mathematicae},
volume = {35},
year = {2008},
pages = {155-175},
zbl = {1155.65063},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am35-2-3}
}
K. Kropielnicka. Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type. Applicationes Mathematicae, Tome 35 (2008) pp. 155-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am35-2-3/