Nonhomogeneous boundary value problem for a semilinear hyperbolic equation
Andrzej Nowakowski
Applicationes Mathematicae, Tome 35 (2008), p. 81-95 / Harvested from The Polish Digital Mathematics Library

We discuss the solvability of a nonhomogeneous boundary value problem for the semilinear equation of the vibrating string xtt(t,y)-Δx(t,y)+f(t,y,x(t,y))=0 in a bounded domain and with a certain type of superlinear nonlinearity. To this end we derive a new dual variational method.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:279912
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am35-1-5,
     author = {Andrzej Nowakowski},
     title = {Nonhomogeneous boundary value problem for a semilinear hyperbolic equation},
     journal = {Applicationes Mathematicae},
     volume = {35},
     year = {2008},
     pages = {81-95},
     zbl = {1146.35390},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am35-1-5}
}
Andrzej Nowakowski. Nonhomogeneous boundary value problem for a semilinear hyperbolic equation. Applicationes Mathematicae, Tome 35 (2008) pp. 81-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am35-1-5/