We prove the existence of a sequence satisfying , where f is a function whose second order Fréchet derivative ∇²f satifies a center-Hölder condition and F is a set-valued map from a Banach space X to the subsets of a Banach space Y. We show that the convergence of this method is superquadratic.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am34-4-8, author = {Catherine Cabuzel and Alain Pietrus}, title = {Solving variational inclusions by a multipoint iteration method under center-H\"older continuity conditions}, journal = {Applicationes Mathematicae}, volume = {34}, year = {2007}, pages = {493-503}, zbl = {1197.49013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-4-8} }
Catherine Cabuzel; Alain Pietrus. Solving variational inclusions by a multipoint iteration method under center-Hölder continuity conditions. Applicationes Mathematicae, Tome 34 (2007) pp. 493-503. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-4-8/