Solving variational inclusions by a multipoint iteration method under center-Hölder continuity conditions
Catherine Cabuzel ; Alain Pietrus
Applicationes Mathematicae, Tome 34 (2007), p. 493-503 / Harvested from The Polish Digital Mathematics Library

We prove the existence of a sequence (xk) satisfying 0f(xk)+i=1Maif(xk+βi(xk+1-xk))(xk+1-xk)+F(xk+1), where f is a function whose second order Fréchet derivative ∇²f satifies a center-Hölder condition and F is a set-valued map from a Banach space X to the subsets of a Banach space Y. We show that the convergence of this method is superquadratic.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:280036
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am34-4-8,
     author = {Catherine Cabuzel and Alain Pietrus},
     title = {Solving variational inclusions by a multipoint iteration method under center-H\"older continuity conditions},
     journal = {Applicationes Mathematicae},
     volume = {34},
     year = {2007},
     pages = {493-503},
     zbl = {1197.49013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-4-8}
}
Catherine Cabuzel; Alain Pietrus. Solving variational inclusions by a multipoint iteration method under center-Hölder continuity conditions. Applicationes Mathematicae, Tome 34 (2007) pp. 493-503. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-4-8/