Local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation in Besov spaces
Gang Wu ; Jia Yuan
Applicationes Mathematicae, Tome 34 (2007), p. 253-267 / Harvested from The Polish Digital Mathematics Library

We study local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation tu-³txxu+2κxu+x[g(u)/2]=γ(2xu²xxu+u³xxxu) for the initial data u₀(x) in the Besov space Bp,rs() with max(3/2,1 + 1/p) < s ≤ m and (p,r) ∈ [1,∞]², where g:ℝ → ℝ is a given Cm-function (m ≥ 4) with g(0)=g’(0)=0, and κ ≥ 0 and γ ∈ ℝ are fixed constants. Using estimates for the transport equation in the framework of Besov spaces, compactness arguments and Littlewood-Paley theory, we get a local well-posedness result.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:279663
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am34-3-1,
     author = {Gang Wu and Jia Yuan},
     title = {Local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation in Besov spaces},
     journal = {Applicationes Mathematicae},
     volume = {34},
     year = {2007},
     pages = {253-267},
     zbl = {05214847},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-3-1}
}
Gang Wu; Jia Yuan. Local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation in Besov spaces. Applicationes Mathematicae, Tome 34 (2007) pp. 253-267. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-3-1/