We study local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation for the initial data u₀(x) in the Besov space with max(3/2,1 + 1/p) < s ≤ m and (p,r) ∈ [1,∞]², where g:ℝ → ℝ is a given -function (m ≥ 4) with g(0)=g’(0)=0, and κ ≥ 0 and γ ∈ ℝ are fixed constants. Using estimates for the transport equation in the framework of Besov spaces, compactness arguments and Littlewood-Paley theory, we get a local well-posedness result.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am34-3-1, author = {Gang Wu and Jia Yuan}, title = {Local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation in Besov spaces}, journal = {Applicationes Mathematicae}, volume = {34}, year = {2007}, pages = {253-267}, zbl = {05214847}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-3-1} }
Gang Wu; Jia Yuan. Local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation in Besov spaces. Applicationes Mathematicae, Tome 34 (2007) pp. 253-267. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-3-1/