It is easy to notice that no sequence of estimators of the probability of success θ in a Bernoulli scheme can converge (when standardized) to N(0,1) uniformly in θ ∈ ]0,1[. We show that the uniform asymptotic normality can be achieved if we allow the sample size, that is, the number of Bernoulli trials, to be chosen sequentially.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am34-2-6, author = {Wojciech Niemiro and Ryszard Zieli\'nski}, title = {Uniform asymptotic normality for the Bernoulli scheme}, journal = {Applicationes Mathematicae}, volume = {34}, year = {2007}, pages = {215-221}, zbl = {1121.60019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-2-6} }
Wojciech Niemiro; Ryszard Zieliński. Uniform asymptotic normality for the Bernoulli scheme. Applicationes Mathematicae, Tome 34 (2007) pp. 215-221. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-2-6/