We consider the stochastic differential equation , where , , are nonrandom continuous functions of t, X₀ is an initial random variable, is a Gaussian process and X₀, Y are independent. We give the form of the solution () to (0.1) and then basing on the results of Plucińska [Teor. Veroyatnost. i Primenen. 25 (1980)] we prove that () is a quasi-diffusion proces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am34-2-5, author = {Agnieszka Pluci\'nska and Wojciech Szyma\'nski}, title = {Quasi-diffusion solution of a stochastic differential equation}, journal = {Applicationes Mathematicae}, volume = {34}, year = {2007}, pages = {205-213}, zbl = {1121.60063}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-2-5} }
Agnieszka Plucińska; Wojciech Szymański. Quasi-diffusion solution of a stochastic differential equation. Applicationes Mathematicae, Tome 34 (2007) pp. 205-213. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am34-2-5/