Invariants, conservation laws and time decay for a nonlinear system of Klein-Gordon equations with Hamiltonian structure
Changxing Miao ; Youbin Zhu
Applicationes Mathematicae, Tome 33 (2006), p. 323-344 / Harvested from The Polish Digital Mathematics Library

We discuss invariants and conservation laws for a nonlinear system of Klein-Gordon equations with Hamiltonian structure ⎧utt-Δu+m²u=-F(|u|²,|v|²)u, ⎨ ⎩vtt-Δv+m²v=-F(|u|²,|v|²)v for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). Based on Morawetz-type identity, we prove that solutions to the above system decay to zero in local L²-norm, and local energy also decays to zero if the initial energy satisfies E(u,v,,0)=1/2(|u(0)|²+|ut(0)|²+m²|u(0)|²+|v(0)|²+|vt(0)|²+m²|v(0)|²+F(|u(0)|²,|v(0)|²))dx<, and F₁(|u|²,|v|²)|u|² + F₂(|u|²,|v|²)|v|² - F(|u|²,|v|²) ≥ aF(|u|²,|v|²) ≥ 0, a > 0.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:279483
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am33-3-7,
     author = {Changxing Miao and Youbin Zhu},
     title = {Invariants, conservation laws and time decay for a nonlinear system of Klein-Gordon equations with Hamiltonian structure},
     journal = {Applicationes Mathematicae},
     volume = {33},
     year = {2006},
     pages = {323-344},
     zbl = {1108.35111},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am33-3-7}
}
Changxing Miao; Youbin Zhu. Invariants, conservation laws and time decay for a nonlinear system of Klein-Gordon equations with Hamiltonian structure. Applicationes Mathematicae, Tome 33 (2006) pp. 323-344. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am33-3-7/