We discuss invariants and conservation laws for a nonlinear system of Klein-Gordon equations with Hamiltonian structure ⎧, ⎨ ⎩ for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). Based on Morawetz-type identity, we prove that solutions to the above system decay to zero in local L²-norm, and local energy also decays to zero if the initial energy satisfies , and F₁(|u|²,|v|²)|u|² + F₂(|u|²,|v|²)|v|² - F(|u|²,|v|²) ≥ aF(|u|²,|v|²) ≥ 0, a > 0.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am33-3-7, author = {Changxing Miao and Youbin Zhu}, title = {Invariants, conservation laws and time decay for a nonlinear system of Klein-Gordon equations with Hamiltonian structure}, journal = {Applicationes Mathematicae}, volume = {33}, year = {2006}, pages = {323-344}, zbl = {1108.35111}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am33-3-7} }
Changxing Miao; Youbin Zhu. Invariants, conservation laws and time decay for a nonlinear system of Klein-Gordon equations with Hamiltonian structure. Applicationes Mathematicae, Tome 33 (2006) pp. 323-344. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am33-3-7/