The autoregressive process takes an important part in predicting problems leading to decision making. In practice, we use the least squares method to estimate the parameter θ̃ of the first-order autoregressive process taking values in a real separable Banach space B (ARB(1)), if it satisfies the following relation: . In this paper we study the convergence in distribution of the linear operator for ||θ̃|| > 1 and so we construct inequalities of Bernstein type for this operator.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am33-3-1, author = {Samir Benaissa}, title = {Bernstein inequality for the parameter of the pth order autoregressive process AR(p)}, journal = {Applicationes Mathematicae}, volume = {33}, year = {2006}, pages = {253-264}, zbl = {1107.62083}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am33-3-1} }
Samir Benaissa. Bernstein inequality for the parameter of the pth order autoregressive process AR(p). Applicationes Mathematicae, Tome 33 (2006) pp. 253-264. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am33-3-1/