Maximum length of a series in a Markovian binary sequence with an application to the description of a basketball game
I. Kopocińska ; B. Kopociński
Applicationes Mathematicae, Tome 33 (2006), p. 61-69 / Harvested from The Polish Digital Mathematics Library

The recurrence formulas for the probability distribution function of the maximum length of a series of 1's in a binary 0-1 Markovian sequence are analysed and the limiting distribution estimated. The result is used to test a semi-Markov model of basketball games.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:279823
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am33-1-5,
     author = {I. Kopoci\'nska and B. Kopoci\'nski},
     title = {Maximum length of a series in a Markovian binary sequence with an application to the description of a basketball game},
     journal = {Applicationes Mathematicae},
     volume = {33},
     year = {2006},
     pages = {61-69},
     zbl = {1105.60026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am33-1-5}
}
I. Kopocińska; B. Kopociński. Maximum length of a series in a Markovian binary sequence with an application to the description of a basketball game. Applicationes Mathematicae, Tome 33 (2006) pp. 61-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am33-1-5/