The Steklov postprocessing operator for the linear finite element method is studied. Superconvergence of order 𝓞(h²) is proved for a class of second order differential equations with zero Dirichlet boundary conditions for arbitrary space dimensions. Relations to other postprocessing and averaging schemes are discussed.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am32-4-8, author = {Karel Kolman}, title = {Superconvergence by Steklov averaging in the finite element method}, journal = {Applicationes Mathematicae}, volume = {32}, year = {2005}, pages = {477-488}, zbl = {1109.65092}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am32-4-8} }
Karel Kolman. Superconvergence by Steklov averaging in the finite element method. Applicationes Mathematicae, Tome 32 (2005) pp. 477-488. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am32-4-8/