We prove that for any λ ∈ ℝ, there is an increasing sequence of eigenvalues μₙ(λ) for the nonlinear boundary value problem ⎧ in Ω, ⎨ ⎩ on crtial ∂Ω and we show that the first one μ₁(λ) is simple and isolated; we also prove some results about variations of the density ϱ and the continuity with respect to the parameter λ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am32-1-1, author = {Abdelouahed El Khalil and Mohammed Ouanan}, title = {On the principal eigencurve of the p-Laplacian related to the Sobolev trace embedding}, journal = {Applicationes Mathematicae}, volume = {32}, year = {2005}, pages = {1-16}, zbl = {1080.35056}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am32-1-1} }
Abdelouahed El Khalil; Mohammed Ouanan. On the principal eigencurve of the p-Laplacian related to the Sobolev trace embedding. Applicationes Mathematicae, Tome 32 (2005) pp. 1-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am32-1-1/