We discuss two different methods of Altman for solving systems of linear equations. These methods can be considered as Krylov subspace type methods for solving a projected counterpart of the original system. We discuss the link to classical Krylov subspace methods, and give some theoretical and numerical results on their convergence behavior.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am31-3-9, author = {C. Roland and B. Beckermann and C. Brezinski}, title = {Altman's methods revisited}, journal = {Applicationes Mathematicae}, volume = {31}, year = {2004}, pages = {353-368}, zbl = {1056.65028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am31-3-9} }
C. Roland; B. Beckermann; C. Brezinski. Altman's methods revisited. Applicationes Mathematicae, Tome 31 (2004) pp. 353-368. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am31-3-9/