Global existence of solutions for incompressible magnetohydrodynamic equations
Wisam Alame ; W. M. Zajączkowski
Applicationes Mathematicae, Tome 31 (2004), p. 201-208 / Harvested from The Polish Digital Mathematics Library

Global-in-time existence of solutions for incompressible magnetohydrodynamic fluid equations in a bounded domain Ω ⊂ ℝ³ with the boundary slip conditions is proved. The proof is based on the potential method. The existence is proved in a class of functions such that the velocity and the magnetic field belong to Wp2,1(Ω×(0,T)) and the pressure q satisfies qLp(Ω×(0,T)) for p ≥ 7/3.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:279806
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am31-2-5,
     author = {Wisam Alame and W. M. Zaj\k aczkowski},
     title = {Global existence of solutions for incompressible magnetohydrodynamic equations},
     journal = {Applicationes Mathematicae},
     volume = {31},
     year = {2004},
     pages = {201-208},
     zbl = {1059.35102},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am31-2-5}
}
Wisam Alame; W. M. Zajączkowski. Global existence of solutions for incompressible magnetohydrodynamic equations. Applicationes Mathematicae, Tome 31 (2004) pp. 201-208. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am31-2-5/