Global-in-time existence of solutions for incompressible magnetohydrodynamic fluid equations in a bounded domain Ω ⊂ ℝ³ with the boundary slip conditions is proved. The proof is based on the potential method. The existence is proved in a class of functions such that the velocity and the magnetic field belong to and the pressure q satisfies for p ≥ 7/3.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am31-2-5,
author = {Wisam Alame and W. M. Zaj\k aczkowski},
title = {Global existence of solutions for incompressible magnetohydrodynamic equations},
journal = {Applicationes Mathematicae},
volume = {31},
year = {2004},
pages = {201-208},
zbl = {1059.35102},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am31-2-5}
}
Wisam Alame; W. M. Zajączkowski. Global existence of solutions for incompressible magnetohydrodynamic equations. Applicationes Mathematicae, Tome 31 (2004) pp. 201-208. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am31-2-5/