Global-in-time existence of solutions for incompressible magnetohydrodynamic fluid equations in a bounded domain Ω ⊂ ℝ³ with the boundary slip conditions is proved. The proof is based on the potential method. The existence is proved in a class of functions such that the velocity and the magnetic field belong to and the pressure q satisfies for p ≥ 7/3.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am31-2-5, author = {Wisam Alame and W. M. Zaj\k aczkowski}, title = {Global existence of solutions for incompressible magnetohydrodynamic equations}, journal = {Applicationes Mathematicae}, volume = {31}, year = {2004}, pages = {201-208}, zbl = {1059.35102}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am31-2-5} }
Wisam Alame; W. M. Zajączkowski. Global existence of solutions for incompressible magnetohydrodynamic equations. Applicationes Mathematicae, Tome 31 (2004) pp. 201-208. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am31-2-5/