The problem of nonparametric estimation of a bounded regression function , [a,b] ⊂ ℝ, d ≥ 1, using an orthonormal system of functions , k=1,2,..., is considered in the case when the observations follow the model , i=1,...,n, where and are i.i.d. copies of independent random variables X and η, respectively, the distribution of X has density ϱ, and η has mean zero and finite variance. The estimators are constructed by proper truncation of the function , where the coefficients are determined by minimizing the empirical risk . Sufficient conditions for convergence rates of the generalization error are obtained.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am28-3-2,
author = {Waldemar Popi\'nski},
title = {On orthogonal series estimation of bounded regression functions},
journal = {Applicationes Mathematicae},
volume = {28},
year = {2001},
pages = {257-270},
zbl = {1008.62038},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am28-3-2}
}
Waldemar Popiński. On orthogonal series estimation of bounded regression functions. Applicationes Mathematicae, Tome 28 (2001) pp. 257-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am28-3-2/