Let U₀ be a random vector taking its values in a measurable space and having an unknown distribution P and let U₁,...,Uₙ and be independent, simple random samples from P of size n and m, respectively. Further, let be real-valued functions defined on the same space. Assuming that only the first sample is observed, we find a minimax predictor d⁰(n,U₁,...,Uₙ) of the vector with respect to a quadratic errors loss function.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am28-1-6, author = {Maciej Wilczy\'nski}, title = {Minimax nonparametric prediction}, journal = {Applicationes Mathematicae}, volume = {28}, year = {2001}, pages = {83-92}, zbl = {1008.62512}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am28-1-6} }
Maciej Wilczyński. Minimax nonparametric prediction. Applicationes Mathematicae, Tome 28 (2001) pp. 83-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am28-1-6/