We derive inequalities for a local solution of a free boundary problem for a viscous compressible heat-conducting capillary fluid. The inequalities are crucial in proving the global existence of solutions belonging to certain anisotropic Sobolev-Slobodetskii space and close to an equilibrium state.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am28-1-3,
author = {Ewa Zadrzy\'nska and Wojciech M. Zaj\k aczkowski},
title = {On some inequalities for solutions of equations describing the motion of a viscous compressible heat-conducting capillary fluid bounded by a free surface},
journal = {Applicationes Mathematicae},
volume = {28},
year = {2001},
pages = {31-53},
zbl = {1052.35142},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am28-1-3}
}
Ewa Zadrzyńska; Wojciech M. Zajączkowski. On some inequalities for solutions of equations describing the motion of a viscous compressible heat-conducting capillary fluid bounded by a free surface. Applicationes Mathematicae, Tome 28 (2001) pp. 31-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am28-1-3/