We present a local and a semi-local convergence analysis of an iterative method for approximating zeros of derivatives for solving univariate and unconstrained optimization problems. In the local case, the radius of convergence is obtained, whereas in the semi-local case, sufficient convergence criteria are presented. Numerical examples are also provided.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am2254-11-2015, author = {Ioannis K. Argyros}, title = {On an iterative method for unconstrained optimization}, journal = {Applicationes Mathematicae}, volume = {42}, year = {2015}, pages = {333-342}, zbl = {1331.65030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am2254-11-2015} }
Ioannis K. Argyros. On an iterative method for unconstrained optimization. Applicationes Mathematicae, Tome 42 (2015) pp. 333-342. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am2254-11-2015/