We present a local convergence analysis of inexact Newton-like methods for solving nonlinear equations. Using more precise majorant conditions than in earlier studies, we provide: a larger radius of convergence; tighter error estimates on the distances involved; and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am2240-11-2015, author = {Ioannis K. Argyros and Santhosh George}, title = {Improved local convergence analysis of inexact Newton-like methods under the majorant condition}, journal = {Applicationes Mathematicae}, volume = {42}, year = {2015}, pages = {343-357}, zbl = {1331.90078}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am2240-11-2015} }
Ioannis K. Argyros; Santhosh George. Improved local convergence analysis of inexact Newton-like methods under the majorant condition. Applicationes Mathematicae, Tome 42 (2015) pp. 343-357. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am2240-11-2015/