On square classes in generalized Fibonacci sequences
Zafer Şiar ; Refik Keskin
Acta Arithmetica, Tome 172 (2016), p. 277-295 / Harvested from The Polish Digital Mathematics Library

Let P and Q be nonzero integers. The generalized Fibonacci and Lucas sequences are defined respectively as follows: U₀ = 0, U₁ = 1, V₀ = 2, V₁ = P and Un+1=PU+QUn-1, Vn+1=PV+QVn-1 for n ≥ 1. In this paper, when w ∈ 1,2,3,6, for all odd relatively prime values of P and Q such that P ≥ 1 and P² + 4Q > 0, we determine all n and m satisfying the equation Uₙ = wUₘx². In particular, when k|P and k > 1, we solve the equations Uₙ = kx² and Uₙ = 2kx². As a result, we determine all n such that Uₙ = 6x².

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286594
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa8436-4-2016,
     author = {Zafer \c Siar and Refik Keskin},
     title = {On square classes in generalized Fibonacci sequences},
     journal = {Acta Arithmetica},
     volume = {172},
     year = {2016},
     pages = {277-295},
     zbl = {06622304},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8436-4-2016}
}
Zafer Şiar; Refik Keskin. On square classes in generalized Fibonacci sequences. Acta Arithmetica, Tome 172 (2016) pp. 277-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8436-4-2016/