Contre-exemples au principe de Hasse pour les courbes de Fermat
Alain Kraus
Acta Arithmetica, Tome 172 (2016), p. 189-197 / Harvested from The Polish Digital Mathematics Library

Let p be an odd prime number. In this paper, we are concerned with the behaviour of Fermat curves defined over ℚ, given by equations axp+byp+czp=0, with respect to the local-global Hasse principle. It is conjectured that there exist infinitely many Fermat curves of exponent p which are counterexamples to the Hasse principle. This is a consequence of the abc-conjecture if p ≥ 5. Using a cyclotomic approach due to H. Cohen and Chebotarev’s density theorem, we obtain a partial result towards this conjecture, by proving it for p ≤ 19.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286330
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa8420-4-2016,
     author = {Alain Kraus},
     title = {Contre-exemples au principe de Hasse pour les courbes de Fermat},
     journal = {Acta Arithmetica},
     volume = {172},
     year = {2016},
     pages = {189-197},
     zbl = {06602752},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8420-4-2016}
}
Alain Kraus. Contre-exemples au principe de Hasse pour les courbes de Fermat. Acta Arithmetica, Tome 172 (2016) pp. 189-197. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8420-4-2016/