La conjecture de Manin pour certaines surfaces de Châtelet
Kevin Destagnol
Acta Arithmetica, Tome 172 (2016), p. 31-97 / Harvested from The Polish Digital Mathematics Library

Following the line of attack of La Bretèche, Browning and Peyre, we prove Manin's conjecture in its strong form conjectured by Peyre for a family of Châtelet surfaces which are defined as minimal proper smooth models of affine surfaces of the form Y² - aZ² = F(X,1), where a = -1, F ∈ ℤ[x₁,x₂] is a polynomial of degree 4 whose factorisation into irreducibles contains two non-proportional linear factors and a quadratic factor which is irreducible over ℚ [i]. This result deals with the last remaining case of Manin's conjecture for Châtelet surfaces with a = -1 and essentially settles Manin's conjecture for Châtelet surfaces with a < 0.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286559
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa8312-2-2016,
     author = {Kevin Destagnol},
     title = {La conjecture de Manin pour certaines surfaces de Ch\^atelet},
     journal = {Acta Arithmetica},
     volume = {172},
     year = {2016},
     pages = {31-97},
     zbl = {06602748},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8312-2-2016}
}
Kevin Destagnol. La conjecture de Manin pour certaines surfaces de Châtelet. Acta Arithmetica, Tome 172 (2016) pp. 31-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8312-2-2016/