We consider Diophantine quintuples a, b, c, d, e. These are sets of positive integers, the product of any two elements of which is one less than a perfect square. It is conjectured that there are no Diophantine quintuples; we improve on current estimates to show that there are at most Diophantine quintuples.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa8254-2-2016,
author = {Mihai Cipu and Tim Trudgian},
title = {Searching for Diophantine quintuples},
journal = {Acta Arithmetica},
volume = {172},
year = {2016},
pages = {365-382},
zbl = {06602745},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8254-2-2016}
}
Mihai Cipu; Tim Trudgian. Searching for Diophantine quintuples. Acta Arithmetica, Tome 172 (2016) pp. 365-382. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8254-2-2016/