On a problem of Sidon for polynomials over finite fields
Wentang Kuo ; Shuntaro Yamagishi
Acta Arithmetica, Tome 172 (2016), p. 239-254 / Harvested from The Polish Digital Mathematics Library

Let ω be a sequence of positive integers. Given a positive integer n, we define rₙ(ω) = |(a,b) ∈ ℕ × ℕ : a,b ∈ ω, a+b = n, 0 < a < b|. S. Sidon conjectured that there exists a sequence ω such that rₙ(ω) > 0 for all n sufficiently large and, for all ϵ > 0, limnr(ω)/nϵ=0. P. Erdős proved this conjecture by showing the existence of a sequence ω of positive integers such that log n ≪ rₙ(ω) ≪ log n. In this paper, we prove an analogue of this conjecture in q[T], where q is a finite field of q elements. More precisely, let ω be a sequence in q[T]. Given a polynomial hq[T], we define rh(ω)=|(f,g)q[T]×q[T]:f,gω,f+g=h,degf,deggdegh,fg|. We show that there exists a sequence ω of polynomials in q[T] such that deghrh(ω)degh for deg h tending to infinity.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286614
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa8252-3-2016,
     author = {Wentang Kuo and Shuntaro Yamagishi},
     title = {On a problem of Sidon for polynomials over finite fields},
     journal = {Acta Arithmetica},
     volume = {172},
     year = {2016},
     pages = {239-254},
     zbl = {06622302},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8252-3-2016}
}
Wentang Kuo; Shuntaro Yamagishi. On a problem of Sidon for polynomials over finite fields. Acta Arithmetica, Tome 172 (2016) pp. 239-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8252-3-2016/