Obstruction sets and extensions of groups
Francesca Balestrieri
Acta Arithmetica, Tome 172 (2016), p. 151-181 / Harvested from The Polish Digital Mathematics Library

Let X be a nice variety over a number field k. We characterise in pure “descent-type” terms some inequivalent obstruction sets refining the inclusion X(k)ét,BrX(k)Br. In the first part, we apply ideas from the proof of X(k)ét,Br=X(k)k by Skorobogatov and Demarche to new cases, by proving a comparison theorem for obstruction sets. In the second part, we show that if k are such that Ext(,k), then X(k)=X(k). This allows us to conclude, among other things, that X(k)ét,Br=X(k)k and X(k)Sol,Br=X(k)Solk.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:279275
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa8154-12-2015,
     author = {Francesca Balestrieri},
     title = {Obstruction sets and extensions of groups},
     journal = {Acta Arithmetica},
     volume = {172},
     year = {2016},
     pages = {151-181},
     zbl = {06586880},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8154-12-2015}
}
Francesca Balestrieri. Obstruction sets and extensions of groups. Acta Arithmetica, Tome 172 (2016) pp. 151-181. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8154-12-2015/