Let p be a prime greater than 3. Consider the modular curve X₀(3p) over ℚ and its Jacobian variety J₀(3p) over ℚ. Let (3p) and (3p) be the group of rational torsion points on J₀(3p) and the cuspidal group of J₀(3p), respectively. We prove that the 3-primary subgroups of (3p) and (3p) coincide unless p ≡ 1 (mod 9) and .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa8140-12-2015, author = {Hwajong Yoo}, title = {Rational torsion points on Jacobians of modular curves}, journal = {Acta Arithmetica}, volume = {172}, year = {2016}, pages = {299-304}, zbl = {1337.11039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8140-12-2015} }
Hwajong Yoo. Rational torsion points on Jacobians of modular curves. Acta Arithmetica, Tome 172 (2016) pp. 299-304. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8140-12-2015/