Grosswald’s conjecture is that g(p), the least primitive root modulo p, satisfies g(p) ≤ √p - 2 for all p > 409. We make progress towards this conjecture by proving that g(p) ≤ √p -2 for all and for all .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa8109-12-2015, author = {Stephen D. Cohen and Tom\'as Oliveira e Silva and Tim Trudgian}, title = {On Grosswald's conjecture on primitive roots}, journal = {Acta Arithmetica}, volume = {172}, year = {2016}, pages = {263-270}, zbl = {06545351}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8109-12-2015} }
Stephen D. Cohen; Tomás Oliveira e Silva; Tim Trudgian. On Grosswald's conjecture on primitive roots. Acta Arithmetica, Tome 172 (2016) pp. 263-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa8109-12-2015/