The class number one problem for the real quadratic fields ℚ(√((an)²+4a))
András Biró ; Kostadinka Lapkova
Acta Arithmetica, Tome 172 (2016), p. 117-131 / Harvested from The Polish Digital Mathematics Library

We solve unconditionally the class number one problem for the 2-parameter family of real quadratic fields ℚ(√d) with square-free discriminant d = (an)²+4a for positive odd integers a and n.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:279595
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa7957-12-2015,
     author = {Andr\'as Bir\'o and Kostadinka Lapkova},
     title = {The class number one problem for the real quadratic fields $\mathbb{Q}$($\surd$((an)$^2$+4a))},
     journal = {Acta Arithmetica},
     volume = {172},
     year = {2016},
     pages = {117-131},
     zbl = {06545343},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa7957-12-2015}
}
András Biró; Kostadinka Lapkova. The class number one problem for the real quadratic fields ℚ(√((an)²+4a)). Acta Arithmetica, Tome 172 (2016) pp. 117-131. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa7957-12-2015/