Lang's conjecture and sharp height estimates for the elliptic curves y² = x³ + b
Paul Voutier ; Minoru Yabuta
Acta Arithmetica, Tome 172 (2016), p. 197-224 / Harvested from The Polish Digital Mathematics Library

For Eb:y²=x³+b, we establish Lang’s conjecture on a lower bound for the canonical height of nontorsion points along with upper and lower bounds for the difference between the canonical and logarithmic heights. These results are either best possible or within a small constant of the best possible lower bounds.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286525
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa7761-2-2016,
     author = {Paul Voutier and Minoru Yabuta},
     title = {Lang's conjecture and sharp height estimates for the elliptic curves y$^2$ = x$^3$ + b},
     journal = {Acta Arithmetica},
     volume = {172},
     year = {2016},
     pages = {197-224},
     zbl = {06602737},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa7761-2-2016}
}
Paul Voutier; Minoru Yabuta. Lang's conjecture and sharp height estimates for the elliptic curves y² = x³ + b. Acta Arithmetica, Tome 172 (2016) pp. 197-224. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa7761-2-2016/