Some q-supercongruences for truncated basic hypergeometric series
Victor J. W. Guo ; Jiang Zeng
Acta Arithmetica, Tome 168 (2015), p. 309-326 / Harvested from The Polish Digital Mathematics Library

For any odd prime p we obtain q-analogues of van Hamme’s and Rodriguez-Villegas’ supercongruences involving products of three binomial coefficients such as k=0(p-1)/2[2kk]q²3(q2k)/((-q²;q²)²k(-q;q)²2k²)0(mod[p]²) for p≡ 3 (mod 4), k=0(p-1)/2[2kk]q³((q;q³)k(q²;q³)kq3k)((q;q)k²)0(mod[p]²) for p≡ 2 (mod 3), where [p]=1+q++qp-1 and (a;q)=(1-a)(1-aq)(1-aqn-1). We also prove q-analogues of the Sun brothers’ generalizations of the above supercongruences. Our proofs are elementary in nature and use the theory of basic hypergeometric series and combinatorial q-binomial identities including a new q-Clausen type summation formula.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:286367
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-4-2,
     author = {Victor J. W. Guo and Jiang Zeng},
     title = {Some q-supercongruences for truncated basic hypergeometric series},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {309-326},
     zbl = {1338.11024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-4-2}
}
Victor J. W. Guo; Jiang Zeng. Some q-supercongruences for truncated basic hypergeometric series. Acta Arithmetica, Tome 168 (2015) pp. 309-326. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-4-2/