Solutions to xyz = 1 and x + y + z = k in algebraic integers of small degree, II
H. G. Grundman ; L. L. Hall-Seelig
Acta Arithmetica, Tome 168 (2015), p. 257-276 / Harvested from The Polish Digital Mathematics Library

Let k ∈ ℤ be such that |k()| is finite, where k:y²=1-2kx+k²x²-4x³. We complete the determination of all solutions to xyz = 1 and x + y + z = k in integers of number fields of degree at most four over ℚ.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279274
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-4,
     author = {H. G. Grundman and L. L. Hall-Seelig},
     title = {Solutions to xyz = 1 and x + y + z = k in algebraic integers of small degree, II},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {257-276},
     zbl = {06498810},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-4}
}
H. G. Grundman; L. L. Hall-Seelig. Solutions to xyz = 1 and x + y + z = k in algebraic integers of small degree, II. Acta Arithmetica, Tome 168 (2015) pp. 257-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-4/