Let k ∈ ℤ be such that is finite, where . We complete the determination of all solutions to xyz = 1 and x + y + z = k in integers of number fields of degree at most four over ℚ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-4, author = {H. G. Grundman and L. L. Hall-Seelig}, title = {Solutions to xyz = 1 and x + y + z = k in algebraic integers of small degree, II}, journal = {Acta Arithmetica}, volume = {168}, year = {2015}, pages = {257-276}, zbl = {06498810}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-4} }
H. G. Grundman; L. L. Hall-Seelig. Solutions to xyz = 1 and x + y + z = k in algebraic integers of small degree, II. Acta Arithmetica, Tome 168 (2015) pp. 257-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-4/