We prove that every set A ⊂ ℤ satisfying for t and δ in suitable ranges must be very close to an arithmetic progression. We use this result to improve the estimates of Green and Morris for the probability that a random subset A ⊂ ℕ satisfies |ℕ∖(A+A)| ≥ k; specifically, we show that .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-2, author = {Przemys\l aw Mazur}, title = {A structure theorem for sets of small popular doubling}, journal = {Acta Arithmetica}, volume = {168}, year = {2015}, pages = {221-239}, zbl = {06498808}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-2} }
Przemysław Mazur. A structure theorem for sets of small popular doubling. Acta Arithmetica, Tome 168 (2015) pp. 221-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-2/