A structure theorem for sets of small popular doubling
Przemysław Mazur
Acta Arithmetica, Tome 168 (2015), p. 221-239 / Harvested from The Polish Digital Mathematics Library

We prove that every set A ⊂ ℤ satisfying xmin(1A*1A(x),t)(2+δ)t|A| for t and δ in suitable ranges must be very close to an arithmetic progression. We use this result to improve the estimates of Green and Morris for the probability that a random subset A ⊂ ℕ satisfies |ℕ∖(A+A)| ≥ k; specifically, we show that (|(A+A)|k)=Θ(2-k/2).

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279419
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-2,
     author = {Przemys\l aw Mazur},
     title = {A structure theorem for sets of small popular doubling},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {221-239},
     zbl = {06498808},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-2}
}
Przemysław Mazur. A structure theorem for sets of small popular doubling. Acta Arithmetica, Tome 168 (2015) pp. 221-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-3-2/