A note on ternary purely exponential diophantine equations
Yongzhong Hu ; Maohua Le
Acta Arithmetica, Tome 168 (2015), p. 173-182 / Harvested from The Polish Digital Mathematics Library

Let a,b,c be fixed coprime positive integers with mina,b,c > 1, and let m = maxa,b,c. Using the Gel’fond-Baker method, we prove that all positive integer solutions (x,y,z) of the equation ax+by=cz satisfy maxx,y,z < 155000(log m)³. Moreover, using that result, we prove that if a,b,c satisfy certain divisibility conditions and m is large enough, then the equation has at most one solution (x,y,z) with minx,y,z > 1.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279042
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-4,
     author = {Yongzhong Hu and Maohua Le},
     title = {A note on ternary purely exponential diophantine equations},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {173-182},
     zbl = {06497307},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-4}
}
Yongzhong Hu; Maohua Le. A note on ternary purely exponential diophantine equations. Acta Arithmetica, Tome 168 (2015) pp. 173-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-4/