We investigate the average number of solutions of certain quadratic congruences. As an application, we establish Manin's conjecture for a cubic surface whose singularity type is A₅ + A₁.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-3, author = {Stephan Baier and Ulrich Derenthal}, title = {Quadratic congruences on average and rational points on cubic surfaces}, journal = {Acta Arithmetica}, volume = {168}, year = {2015}, pages = {145-171}, zbl = {06497306}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-3} }
Stephan Baier; Ulrich Derenthal. Quadratic congruences on average and rational points on cubic surfaces. Acta Arithmetica, Tome 168 (2015) pp. 145-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-3/