Quadratic congruences on average and rational points on cubic surfaces
Stephan Baier ; Ulrich Derenthal
Acta Arithmetica, Tome 168 (2015), p. 145-171 / Harvested from The Polish Digital Mathematics Library

We investigate the average number of solutions of certain quadratic congruences. As an application, we establish Manin's conjecture for a cubic surface whose singularity type is A₅ + A₁.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279786
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-3,
     author = {Stephan Baier and Ulrich Derenthal},
     title = {Quadratic congruences on average and rational points on cubic surfaces},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {145-171},
     zbl = {06497306},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-3}
}
Stephan Baier; Ulrich Derenthal. Quadratic congruences on average and rational points on cubic surfaces. Acta Arithmetica, Tome 168 (2015) pp. 145-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-3/