Chebotarev sets
Hershy Kisilevsky ; Michael O. Rubinstein
Acta Arithmetica, Tome 168 (2015), p. 97-124 / Harvested from The Polish Digital Mathematics Library

We consider the problem of determining whether a set of primes, or, more generally, prime ideals in a number field, can be realized as a finite union of residue classes, or of Frobenius conjugacy classes. We give necessary conditions for a set to be realized in this manner, and show that the subset of primes consisting of every other prime cannot be expressed in this way, even if we allow a finite number of exceptions.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279504
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-1,
     author = {Hershy Kisilevsky and Michael O. Rubinstein},
     title = {Chebotarev sets},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {97-124},
     zbl = {1331.11082},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-1}
}
Hershy Kisilevsky; Michael O. Rubinstein. Chebotarev sets. Acta Arithmetica, Tome 168 (2015) pp. 97-124. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-2-1/