The largest prime factor of X³ + 2
A. J. Irving
Acta Arithmetica, Tome 168 (2015), p. 67-80 / Harvested from The Polish Digital Mathematics Library

Improving on a theorem of Heath-Brown, we show that if X is sufficiently large then a positive proportion of the values n³ + 2: n ∈ (X,2X] have a prime factor larger than X1+10-52.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279223
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-1-5,
     author = {A. J. Irving},
     title = {The largest prime factor of X$^3$ + 2},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {67-80},
     zbl = {06487226},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-1-5}
}
A. J. Irving. The largest prime factor of X³ + 2. Acta Arithmetica, Tome 168 (2015) pp. 67-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-1-5/